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Vectors in Rn

Definition (Vectors in Rn)

By Rn we denote the set of all ordered n-tuples of real numbers, i.e.,

Rn = {(a1, a2, . . . , an); a1 ∈ R, a2 ∈ R, . . . , an ∈ R}.

Elements of the set Rn, the ordered n-tuples, are called (algebraic) vectors.
Vectors are denoted by an arrow symbol over the variable: ~a = (a1, a2, . . . , an).
The numbers a1, . . . , an are called components of the vector ~a = (a1, a2, . . . , an)
and the number n is called a dimension of the vector ~a.
Vector ~a can be also written as the so-called column vector in the form ~a =

a1
a2
...
an

.

Example

~a = (−1, 6) ∈ R2, ~b = (2, 9,−1) ∈ R3, ~c = (2, 5, 0,−8, 9) ∈ R5

Remark (Geometric description of R2 and R3)

R2 can be regarded as the set of all points in the plane, since each point in
the plane is determined by an ordered pair of numbers. A vector (a1, a2) is
represented geometrically by the point (a1, a2) (sometimes with arrow from
the origin (0, 0) included for visual clarity).

Similarly, vectors in R3 can be regarded as points in a 3-dimensional
coordinate space.
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Definition (Vector addition and multiplication by a real number)

For k ∈ R and the vectors ~a = (a1, a2, . . . , an) ∈ Rn, ~b = (b1, b2, . . . , bn) ∈ Rn

we define the operations vector addition and multiplication by a real number:

~a+~b = (a1 + b1, a2 + b2, . . . , an + bn)

k~a = (ka1, ka2, . . . , kan).

Example

Let ~a = (2,−1, 3), ~b = (1, 0, 6), ~c = (5, 6,−2, 1).

~a+~b = (2,−1, 3) + (1, 0, 6) = (3,−1, 9)
−5~c = −5 · (5, 6,−2, 1) = (−25,−30, 10,−5)

The sum ~a+~c is not defined, since the vectors ~a, ~c are not of the same dimension
(~a ∈ R3, ~c ∈ R4).

Definition

Two vectors (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ Rn are called equal if
a1 = b1, a2 = b2, . . . , an = bn.

The vector ~o := (0, 0, . . . , 0) is called the zero vector.

The difference ~a−~b of two vectors ~a ∈ Rn and ~b ∈ Rn is defined by
~a−~b = ~a+ (−~b), where the vector −~b = (−1)~b is called the negative of ~b.

Example

Let ~a = (2,−1, 3), ~b = (1, 0, 6), ~c = (5, 6,−2, 1).

−~a = (−2, 1,−3)
−~b = (−1, 0,−6)

~a−~b = (2,−1, 3)− (1, 0, 6) = (1,−1,−3)

The difference ~a− ~c is not defined, since the vectors ~a, ~c are not of the same
dimension.

2



Definition (Scalar product)

The scalar product of the vectors ~a = (a1, a2, . . . , an), ~b = (b1, b2, . . . , bn) is the
real number

~a ·~b = a1b1 + a2b2 + · · ·+ anbn.

Example

Let ~a = (2,−1, 3, 2), ~b = (1, 0, 6,−3).

~a ·~b = 2 · 1 + (−1) · 0 + 3 · 6 + 2 · (−3)
= 2 + 0 + 18− 6 = 14.

Definition (Linear combination of vectors)

Let ~a1,~a2, . . . ,~ak (k ∈ N) be vectors in Rn, t1, t2, . . . , tk be real numbers. The
vector

~b = t1~a1 + t2~a2 + · · ·+ tk~ak,

is called a linear combination of the vectors ~a1,~a2, . . . ,~ak. The numbers
t1, t2, . . . , tk are called coefficients of the linear combination.

Example

Let ~a = (3, 2,−1), ~b = (1, 0,−3), ~c = (2,−1,−1).
Some examples of linear combinations of vectors ~a, ~b, ~c are

~d = 3~a− 2~b+ ~c = (9, 5, 2)

~o = 0~a+ 0~b+ 0~c = (0, 0, 0).

The zero vector can be always written as a linear combination of given vectors,
since it can be written as the so-called trivial linear combination when all
coefficients of the linear combination equal zero.
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Definition (Linear (in)dependence of vectors)

We say that vectors ~a1,~a2, . . . ,~ak are linearly dependent if there exist real
numbers t1, t2, . . . , tk, not all zero, such that

t1~a1 + t2~a2 + · · ·+ tk~ak = ~o.

In the opposite case we say that these vectors are linearly independent.

Remark

It follows from the definition:

Given vectors are linearly dependent if and only if at least one of these
vectors can be written as a linear combination of the others.

Given vectors are linearly independent if the trivial linear combination is the
only possibility how to write the zero vector as a linear combination of these
vectors.

Remark (Special cases of linearly (in)dependent vectors)

Two vectors are linearly dependent if and only if one of these vectors is a
constant multiple of the other.

A set of vectors (of the same dimension) is linearly dependent whenever at least
one of the following statements holds:

The set contains a zero vector.

At least one of the vectors in the set is a constant multiple of another one.

The number of vectors in the set is greater than a dimension of each vector.

Generally we will be able to decide about linear (in)dependence after introducing
the concept of the rank of a matrix.
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Example

Vectors (1, 2, 0,−3), (−2,−4, 0, 6) are linearly dependent, since

(−2,−4, 0, 6) = −2 · (1, 2, 0,−3).

Vectors (1, 5, 0,−2), (5, 6,−1,−1) are linearly independent.

Vectors (1, 3, 8), (0, 0, 0), (−1, 0, 3) are linearly dependent, since there is a
zero vector.

Vectors (1, 2, 3), (3, 7, 1), (2, 4, 6) are linearly dependent since

(2, 4, 6) = 2 · (1, 2, 3).

Vectors (1, 3), (2, 1), (−3, 2) are linearly dependent since there are three
vectors in the set and the dimension of the vectors is only two.

We are not able to decide (at first sight) about linear
dependence/independence of the vectors (1, 3, 8), (1, 0,−1), (9, 3,−4).

Matrix-basic concepts

Definition (Matrix)

A rectangular array with m rows and n columns

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 ,

where aij ∈ R for i = 1, . . . ,m, j = 1, . . . , n, is called an m× n matrix. Shortly we

write A = (aij). The set of all m× n matrices is denoted by Rm×n. The entries aii form

the main diagonal of A. If m = n, then a matrix is called a square matrix.

Remark

The rows and the columns of a matrix can be viewed as vectors. Hence we speak about

addition, multiplication by a real number, linear combination, linear (in)dependence, etc.

of the rows (columns).
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Zero matrix

A matrix whose entries are all zero is called a zero matrix and is denoted by 0.
The size of a zero matrix is usually clear from the context.

Identity matrix

A square n× n matrix with the numbers 1 in the main diagonal and the numbers
0 outside this diagonal is called an n× n identity matrix and is denoted by In or
shortly by I.

Example

I2 =

(
1 0
0 1

)
, I3 =

 1 0 0
0 1 0
0 0 1

 .

The transpose of a matrix

Let A = (aij) be an m× n matrix. The transpose of A is the n×m matrix,
denoted by AT , whose columns are formed from the corresponding rows of A, i.e.,
AT = (aji).

Example

Let

A =


1 2 0
−1 3 6
3 −2 8
5 1 1

 , B =

 1 2 0
2 3 −2
0 −2 7

 .

Then

AT =

 1 −1 3 5
2 3 −2 1
0 6 8 1

 , BT =

 1 2 0
2 3 −2
0 −2 7

 .

We have B = BT . A matrix with this property is called a symmetric matrix.
Another example of a symmetric matrix is an identity matrix.
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Matrix operations

Definition (Matrix addition and multiplication by a real number)

Let A = (aij), B = (bij) be m× n matrices. The sum of the matrices A and B is
the m× n matrix C = (cij), where

cij = aij + bij

for all i, j. We write C = A + B.

Let A = (aij) be an m× n matrix, t ∈ R. The product of the number t and the
matrix A is the m× n matrix D = (dij), where

dij = t · aij

for all i, j. We write D = tA.

Remark

As with vectors, we define −A to mean (−1)A, and we write A−B instead of

A + (−1)B.

Example

Let

A =

(
4 0 5
−1 3 2

)
, B =

(
1 1 1
3 5 7

)
, C =

(
2 −3
0 1

)
.

Then

A+B =

(
5 1 6
2 8 9

)
,

3C =

(
6 −9
0 3

)
,

A− 2B =

(
4 0 5
−1 3 2

)
−
(

2 2 2
6 10 14

)
=

(
2 −2 3
−7 −7 −12

)
.

The sum A+ C is not defined since A and C have different sizes.
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Definition (Matrix multiplication)

Let A = (aij) be an m× n matrix, B = (bij) be an n× p matrix. The product of
the matrices A and B (in this order) is the m× p matrix C = (cij), where

cij = ai1b1j + ai2b2j + · · ·+ ainbnj

for i = 1, . . . ,m, j = 1, . . . , p. We write C = AB.

Remark (Explanation of the previous definition)

The number of the columns of A must be equal to the number of the rows of
B. Otherwise, AB is not defined. AB has the same number of rows as A and
the same number of columns as B.

The entry cij in C is the scalar product of the i-th row of A and the j-th
column of B.

As we will see from examples, matrix multiplication is not a commutative
operation, i.e., in general, AB 6= BA. The position of the factors in the
product AB is emphasized by saying that A is right-multiplied by B or that
B is left-multiplied by A.

Example

Let

A =

 3 2 −1
0 1 2
−2 0 1

 , B =

 2 1
3 0
1 3

 .

Then

AB =

 3 2 −1
0 1 2
−2 0 1

 2 1
3 0
1 3


=

 3 · 2 + 2 · 3− 1 · 1 3 · 1 + 2 · 0− 1 · 3
0 · 2 + 1 · 3 + 2 · 1 0 · 1 + 1 · 0 + 2 · 3
−2 · 2 + 0 · 3 + 1 · 1 −2 · 1 + 0 · 0 + 1 · 3

 =

 11 0
5 6
−3 1


BA =

 2 1
3 0
1 3

 3 2 −1
0 1 2
−2 0 1

 is not defined.

A2 =

 3 2 −1
0 1 2
−2 0 1

 3 2 −1
0 1 2
−2 0 1

 =

 11 8 0
−4 1 4
−8 −4 3


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Theorem (Properties of matrix multiplication)

Let A,B,C, I have sizes for which the indicated sums and products are defined,
r ∈ R.

1 A(BC) = (AB)C

2 A(B + C) = AB +AC

3 (B + C)A = BA+ CA

4 r(AB) = (rA)B = A(rB)

5 IA = AI = A

(associative law)

(left distributive law)

(right distributive law)

(identity for matrix multiplication)

Warnings

1 In general, AB 6= BA.

2 The cancellation laws do not hold for matrix multiplication, i.e.,
AB = AC 6⇒ B = C in general.

3 In general, AB = 0 6⇒ A = 0 or B = 0.

Row echelon form

Definition (Row echelon matrix)

We say that a matrix is in row echelon form if it has the following properties:

All zero rows (if exist any) are at the bottom of the matrix.

If two successive rows are nonzero, then the second row starts with more
zeros than the first one.

Example

The following matrices are in row echelon form:
1 0 7 3
0 2 5 2
0 0 0 0
0 0 0 0

 ,


0 5 7 3 1 2 3 1
0 0 0 4 5 3 0 2
0 0 0 0 2 0 1 2
0 0 0 0 0 0 0 6

 .

The leading (leftmost nonzero) entries form an echelon pattern that moves down
and to the right through the matrix.
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Rank of a matrix

Definition (Rank of a matrix)

Let A be a matrix. The rank of the matrix A, denoted by rankA, is the maximal
number of linearly independent rows of A.

Theorem

The rank of a matrix in row echelon form equals to the number of the nonzero
rows of this matrix.

Example

Let

A =


0 5 7 3 1 2 3 1
0 0 0 4 5 3 0 2
0 0 0 0 2 0 1 2
0 0 0 0 0 0 0 6
0 0 0 0 0 0 0 0

 , B =


1 0 7 3
0 1 5 2
0 3 1 8
7 5 0 1
0 0 0 0

 .

A is in row echelon form and rankA = 4.
B is not in row echelon form, and hence we are not able to find rankB at first
sight.
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Definition (Equivalent row operations)

The following operations

1 multiplying a row by a nonzero constant,

2 interchanging rows in arbitrary order,

3 adding a multiple of one row to a nonzero multiple of another row,

4 omitting a zero row or a row which is a constant multiple of another row,

are called equivalent row operations. The fact that a matrix A is transformed
into a matrix B applying a sequence of these operations is denoted by A ∼ B and
these matrices are said to be equivalent.

Theorem

(i) Any nonzero matrix can be transformed by equivalent row operations into its
row echelon form.

(ii) The equivalent row operations preserve the rank of matrices, i.e., equivalent
matrices have the same rank.

Remark

To find the rank of a matrix A, we apply equivalent row operations onto A in
order to convert A into its row echelon form. The rank of A is then equal to
the number of the nonzero rows of this echelon form.

Any nonzero matrix may be transformed by elementary row operations into
more than one matrix in row echelon form, using different sequences of row
operations.

In the following, by the pivot we mean a nonzero number that is used to
create zeros via row operations. The row and the column containing the pivot
are called pivot row and pivot column, respectively.
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Example

Find the rank of the matrix

A =


3 6 − 1 − 2 4

1 3 2 − 1 2
0 2 1 0 − 1
−1 1 0 1 − 4


←−
←−

∼


1 3 2 −1 2
3 6 −1 −2 4
0 2 1 0 −1
−1 1 0 1 −4

 ←−
−3

+

←−−−−−+

∼


1 3 2 −1 2

0 -3 −7 1 −2
0 2 1 0 −1
60 64 62 60 6 − 2

 | 3 ←−2

+

∼

1 3 2 −1 2
0 −3 −7 1 −2
0 0 −11 2 −7



The matrix in row echelon form
has three nonzero rows, hence

rank(A) = 3.

The process of conversion of a matrix into its row echelon form described in the
previous example can be summarized as follows:

Conversion a matrix into its row echelon form

1 Begin with the leftmost nonzero column – the so-called pivot column. Select
a nonzero entry in the pivot column as a pivot (the best choice: 1 or −1).

2 Move the pivot row to the top.

3 Use row operations to create zeros in all positions below the pivot (i.e., add
an appropriate constant multiple of the pivot row to an appropriate constant
multiple of each row below). Optionally, use additional row operations that
may simplify the matrix.

4 Cover (or ignore) the pivot row and all rows, if any, above it. Apply steps 1–3
to the submatrix that remains. Repeat the process until the matrix is in a row
echelon form.
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Theorem

The rank of a matrix and the rank of its transpose are the same, i.e.,
rankA = rankAT .

Remark

It follows from the last theorem that all facts concerning the rank of a matrix
which are valid for rows can be reformulated for columns. Hence the rank of a
matrix can be also regarded as the maximal number of linearly independent
columns of the matrix.

Remark (Linear (in)dependence of vectors)

We can conclude from the definition of the rank of a matrix (and from the last
theorem) that m given vectors are

linearly dependent whenever rankA < m,

linearly independent whenever rankA = m,

where A is a matrix whose rows (or columns) are formed from the given vectors.

Example

The vectors

(3, 6,−1,−2, 4), (1, 3, 2,−1, 2), (0, 2, 1, 0,−1), (−1, 1, 0, 1,−4)

are linearly dependent since the rank of the matrix
3 6 −1 −2 4
1 3 2 −1 2
0 2 1 0 −1
−1 1 0 1 −4

 ∼
 1 3 2 −1 2

0 −3 −7 1 −2
0 0 −11 2 −7


equals 3, see the example above.
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Example

The vectors

(0, 2, 0, 3, 0), (1, 0, 0, 0, 0), (0, 0, 0, 5,−1), (0, 0, 1, 0,−4)

are linearly independent since the rank of the matrix
0 2 0 3 0
1 0 0 0 0
0 0 0 5 −1
0 0 1 0 −4

 ∼


1 0 0 0 0
0 2 0 3 0
0 0 1 0 −4
0 0 0 5 −1


equals 4.

Inverse matrix

Definition (Inverse matrix)

Let A be an n× n square matrix. We say that A is invertible if there exists an
n× n matrix A−1 such that

AA−1 = I = A−1A.

The matrix A−1 is called the inverse of A.

If A is invertible, than the inverse A−1 is determined uniquely by A. But not every
matrix is invertible.

Theorem

A matrix A is invertible if and only if A can be transformed into I by
equivalent row operations.

Any sequence of equivalent row operations that transforms A into I also
transforms I into A−1.
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The last theorem leads to a method for finding the inverse of a matrix.

An algorithm for finding A−1

Let A be a square matrix.

1 We form the “partitioned” matrix (A|I).
2 We apply to (A|I) the equivalent row operations that converts A into I. (We

create zeros in all positions below and above the pivots.)

3 If A is converted into I (the left-hand side of the resulting matrix is I), then
A−1 appears on the right-hand side of the resulting matrix, i.e.,

(A|I) ∼ · · · ∼ (I|A−1).

4 If A cannot be converted to I (if there appears a zero row on the left-hand
side), then A does not have an inverse.

! We cannot use any column operations.

Example

A =

1 −1 1
2 0 −1
0 2 −2

 A−1 =?

 1 − 1 1
2 0 − 1
0 2 − 2

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

←−−2

+

∼

1 −1 1

0 2 −3
0 2 −2

∣∣∣∣∣∣
1 0 0
−2 1 0
0 0 1

| · 2 ←−+

←−−−−−−−
−1

+

∼

2 0 −1
0 2 −3
0 0 1

∣∣∣∣∣∣
0 1 0
−2 1 0
2 −1 1

←−
3

+

←−−−−+

∼

2 0 0
0 2 0
0 0 1

∣∣∣∣∣∣
2 0 1
4 −2 3
2 −1 1

| : 2| : 2
∼

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
1 0 1

2
2 −1 3

2
2 −1 1

 =⇒ A−1 = 1
2

2 0 1
4 −2 3
4 −2 2

 .
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Example

B =

1 1 2
2 1 3
4 3 7

 B−1 =?

 1 1 2
2 1 3
4 3 7

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

←−−2

+

←−−−−−

−4

+

∼

1 1 2
0 −1 −1
0 −1 −1

∣∣∣∣∣∣
1 0 0
−2 1 0
−4 0 1

.

It follows from the last matrix that B−1 does not exist.

Determinants

Determinant of a matrix

Let A = (aij) be an n× n matrix. The determinant of A is a real number detA
(also denoted by |A|), i.e.,

detA = |A| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ ,
which is assigned to A “in a certain way”.
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Determinants of small matrices

If n = 1, i.e., A = a11, then detA = a11.

If n = 2 : ∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a21a12,

If n = 3 :∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a21a32a13 + a12a23a31
−a31a22a13 − a32a23a11 − a21a12a33.

Sarus’ rule for determinant of 3× 3 matrix

The formula for calculation determinants of 3× 3 matrices can be remembered as
follows:

We write once more the first and the second row below the determinant.

Then we multiply each three elements in the main diagonal and below (these
products are with the sign +).

Next we multiply the elements in the diagonal a31 − a22 − a13 and below
(these products are with the sign −),

and we sum up all these products.∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33+a21a32a13+a31a12a23
−a31a22a13−a11a32a23−a21a12a33

a11 a12 a13
a21 a22 a23

This trick does not generalize in any way to 4× 4 or larger matrices!
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When computing determinants of 4× 4 or larger matrices we can use the
following Laplace expansion.

Theorem (The Laplace expansion)

Let n ≥ 2 and assume that the determinant of (n− 1)× (n− 1) matrix has been
defined. Denote by Mij the determinant of the (n− 1)× (n− 1) matrix obtained
from A by deleting the i-th row and the j-the column. Then

detA = (−1)i+1ai1Mi1 + (−1)i+2ai2Mi2 + · · ·+ (−1)i+nainMin

for i = 1, . . . , n,

(the so-called Laplace expansion along the i-th row)

or in an alternative way:

detA = (−1)1+ja1jM1j + (−1)2+ja2jM2j + · · ·+ (−1)n+janjMnj

for j = 1, . . . , n.

(the so-called Laplace expansion along the j-th column)

Example (Laplace expansion)

When using Laplace expansion for computing the determinant of a matrix, we
choose the row or column that contains many zeros.

The best choice in the following determinant is the third row.

The obtained two determinants of 3× 3 matrices can be computed using the
Sarus rule. ∣∣∣∣∣∣∣∣

−1 2 5 −1
−1 −2 −4 2
2 0 1 0
−3 3 −7 −1

∣∣∣∣∣∣∣∣
= (−1)3+12

∣∣∣∣∣∣
2 5 −1
−2 −4 2
3 −7 −1

∣∣∣∣∣∣ + (−1)3+31

∣∣∣∣∣∣
−1 2 −1
−1 −2 2
−3 3 −1

∣∣∣∣∣∣
= 2[8− 14 + 30− (12− 28 + 10)] + [−2 + 3− 12− (−6− 6 + 2)] = 59
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Note that to calculate the determinant of n× n matrix we need to calculate n
determinants of (n− 1)× (n− 1) matrices. To calculate each of these n
determinants we need to calculate n− 1 determinants of (n− 2)× (n− 2)
matrices, and so on.
This means that the Laplace expansion is not suitable for computing determinants
of large matrices with not many zeros.
The following statement says how to simplify computations by creating more zeros
in the matrix.

Theorem (Properties of determinants)

Let A be an n× n square matrix.

1 The determinant of a matrix and the determinant of its transpose are the
same, i.e., detA = detAT .

2 If a multiple of a row is added to another row, the value of the determinant is
unchanged.

3 If any two rows (columns) of A are interchanged, the determinant of the new
matrix equals −detA.

4 If a row (column) of A is multiplied by a number k, the determinant of the
new matrix is k detA.

5 If a row (column) of A is divided by a number k 6= 0, the determinant of the
new matrix is 1

k detA.

6 The determinant of a matrix with zeros below the main diagonal is equal to
the product of the entries on the main diagonal, i.e., detA = a11a22 · · · ann.
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The last theorem leads to other methods for computing the determinant of a
matrix using the row or column operations:

Method 1

We convert the matrix into the matrix which has zeros below the main diagonal.
Then we find the product of the entries of the main diagonal.

Method 2

We convert the matrix into the matrix which has at most one nonzero entry in
some row (or column). Then we use the Laplace expansion along this row (or
column).

We have to be careful when using the row (or column) operations, since some of
these operations change the value of the determinant, namely:

changing rows (columns),

multiplying (dividing) the non-pivot rows (columns).

Theorem

Let A be an n× n square matrix. Then detA = 0 whenever at least one of the
following conditions is satisfied:

1 A contains a zero row (or column).

2 Two rows (columns) of A are identical.

3 One row (column) is a constant multiple of another row (column).
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Regular and singular matrix

Theorem

Let A be an n× n square matrix. Then the following statements are equivalent:

1 A is invertible, i.e., A−1 exists.

2 detA 6= 0.

3 rankA = n.

4 The rows (columns) of A are linearly independent.

Definition (Regular and singular matrix)

We say that a square matrix is regular (or non-singular), if it has the properties
stated in the last theorem. In the opposite case, the matrix is said to be singular.

Using the computer algebra systems

Wolfram Alpha:

http://www.wolframalpha.com/

Example

Find the product of the matrices using the Wolfram Alpha:

(
1 2 2
2 1 3

)1 2
3 1
1 4

 .

Solution:

{{1,2,2},{2,1,3}}*{{1,2},{3,1},{1,4}}
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Example

Using the Wolfram Alpha fing the rank, determinant and the inverse matrix of the
matrix 1 2 3

2 0 1
3 2 1

 .

Solution:

1 rank:

rank{{1,2,3},{2,0,1},{3,2,1}}

2 determinant:

det{{1,2,3},{2,0,1},{3,2,1}}

3 inverse matrix:

inv{{1,2,3},{2,0,1},{3,2,1}}
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