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Vectors in R"

Definition (Vectors in R")

By R™ we denote the set of all ordered n-tuples of real numbers, i.e.,

R™ = {(a1,as,...,an);a1 E R,as €R,... a, € R}.

Elements of the set R, the ordered n-tuples, are called (algebraic) vectors.
Vectors are denoted by an arrow symbol over the variable: @ = (a1, aq, ..., an).
The numbers ay, ..., a, are called components of the vector @ = (a1, as,...,a,)

and the number n is called a dimension of the vector a.
ay

. . as
Vector @ can be also written as the so-called column vector in the form @ =

Qn

a=(-1,6)€R? b=(2,9-1)ecR? &=(2,50-8,9) cR’
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Remark (Geometric description of R? and R?)

o R? can be regarded as the set of all points in the plane, since each point in
the plane is determined by an ordered pair of numbers. A vector (a1, as) is
represented geometrically by the point (a1, as) (sometimes with arrow from
the origin (0, 0) included for visual clarity).

@ Similarly, vectors in R? can be regarded as points in a 3-dimensional
coordinate space.

(R))
.+ (32)
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Definition (Vector addition and multiplication by a real number)

For k € R and the vectors @ = (a1, ag, . ..,a,) € R", b= (b1,ba,...,b,) eR™
we define the operations vector addition and multiplication by a real number:

d'+5=(a1+b1,a2—|—b2,...,an—|—bn)
ka = (kal,kaz,...,kan).

Example

Let @ = (2,—1,3), b= (1,0,6), = (5,6, —2,1).

a+b = (2,—1,3)+(1,0,6) = (3,-1,9)
—-5¢ = —5-(5,6,—2,1) = (—25,-30,10,—5)

The sum @ + Cis not defined, since the vectors d@, ¢ are not of the same dimension
(@eR? ceR?).
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Definition

o Two vectors (a1, as,...,a,), (b1,ba,...,b,) € R™ are called equal if
aq :bl, agzbg,...,an :bn

@ The vector ¢:= (0,0,...,0) is called the zero vector.

@ The difference @ — b of two vectors @ eR" and_}l_)’ € R" is defined by .
@ —b=d+ (—b), where the vector —b = (—1)b is called the negative of b.

V.

Example

Let @ = (2,-1,3), b= (1,0,6), &= (5,6,—2,1).

- = (-2,1,-3)
_E; (_1707_6)
i-b = (2,-1,3)—(1,0,6) = (1,—1,-3)

The difference @ — ¢ is not defined, since the vectors @, ¢ are not of the same
dimension.
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Definition (Scalar product)

The scalar product of the vectors @ = (a1, ag, ..., ay), b= (b1,ba,...,by) is the
real number .
a-b=aib; +agby+ -+ a,b,.

Example
Let @ = (2,-1,3,2), b= (1,0,6,—3).

—

a-b

2:-14(-1)-0+3-6+2-(-3)
= 24+0+18-6=14.
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Definition (Linear combination of vectors)

Let @y, ds,...,dr (k € N) be vectors in R™, 1,ta,...,t; be real numbers. The
vector
b=t1dy +tadz + -+ - + txd,

is called a linear combination of the vectors dy, ds, ..., dr. The numbers
t1,ta,...,t; are called coefficients of the linear combination.

v
Example

Let @ = (3,2,—1), b= (1,0,-3), &= (2,—1,—1).

Some examples of linear combinations of vectors a, b, ¢ are

d = 3@—-2b+2=(9,5,2)
0@ + 06 + 0 = (0,0,0).

Sl
Il

The zero vector can be always written as a linear combination of given vectors,
since it can be written as the so-called trivial linear combination when all
coefficients of the linear combination equal zero.

Simona Fisnarova (MENDELU) Linear algebra — vectors, matrices, determinants 2014

7/44



Definition (Linear (in)dependence of vectors)

We say that vectors a1, ds, . .., dy are linearly dependent if there exist real
numbers tq,to,...,tx, not all zero, such that

t1@1 + tods + - - - + trdy = 0.

In the opposite case we say that these vectors are linearly independent.

It follows from the definition:

@ Given vectors are linearly dependent if and only if at least one of these
vectors can be written as a linear combination of the others.

o Given vectors are linearly independent if the trivial linear combination is the
only possibility how to write the zero vector as a linear combination of these
vectors.
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Remark (Special cases of linearly (in)dependent vectors)

@ Two vectors are linearly dependent if and only if one of these vectors is a
constant multiple of the other.

A set of vectors (of the same dimension) is linearly dependent whenever at least
one of the following statements holds:
@ The set contains a zero vector.
@ At least one of the vectors in the set is a constant multiple of another one.
@ The number of vectors in the set is greater than a dimension of each vector.

Generally we will be able to decide about linear (in)dependence after introducing
the concept of the rank of a matrix.
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Example

@ Vectors (1,2,0,—3), (—2,—4,0,6) are linearly dependent, since
(=2, -4,0,6) = -2 (1,2,0, —3).

e Vectors (1,5,0,—2), (5,6, —1,—1) are linearly independent.

@ Vectors (1,3,8), (0,0,0), (—1,0,3) are linearly dependent, since there is a
zero vector.

@ Vectors (1,2,3), (3,7,1), (2,4,6) are linearly dependent since
(2,4,6) =2 (1,2,3).

@ Vectors (1,3), (2,1), (—3,2) are linearly dependent since there are three
vectors in the set and the dimension of the vectors is only two.

o We are not able to decide (at first sight) about linear
dependence/independence of the vectors (1, 3,8), (1,0,—1), (9,3, —4).
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Matrix-basic concepts

Definition (Matrix)

A rectangular array with m rows and n columns

a11 aiz2 - Aln
a21 G2 - Q2n
A= ,
Am1l Qm2 - Amn
where a;; e Rfori=1,...,m, j=1,...,n, is called an m x n matrix. Shortly we

write A = (a;;). The set of all m x n matrices is denoted by R™*™. The entries a;; form
the main diagonal of A. If m = n, then a matrix is called a square matrix.
The rows and the columns of a matrix can be viewed as vectors. Hence we speak about

addition, multiplication by a real number, linear combination, linear (in)dependence, etc.
of the rows (columns).
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Zero matrix

A matrix whose entries are all zero is called a zero matrix and is denoted by 0.
The size of a zero matrix is usually clear from the context.

| A

Identity matrix
A square n. X n matrix with the numbers 1 in the main diagonal and the numbers
0 outside this diagonal is called an n x n identity matrix and is denoted by I,, or
shortly by I.

Example
1 0 0
I2 = ( (1] ? ) s I3 = 0 1 0
0 0 1
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The transpose of a matrix

Let A = (a;;) be an m x n matrix. The transpose of A is the n x m matrix,
denoted by A”, whose columns are formed from the corresponding rows of A, i.e.,
AT = ().

v

Example
Let
_1 g g 1 2 0
A= , B=|2 3 =2
3 -2 8 0 -2 7
5 1 1
Then
1 -1 3 5 1 2 0
AT=12 3 —2 1|, Bf=2 3 =2
0 6 8 1 0o -2 7

We have B = BT. A matrix with this property is called a symmetric matrix.
Another example of a symmetric matrix is an identity matrix.
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Matrix operations

Definition (Matrix addition and multiplication by a real number)

o Let A = (aij), B = (bij) be m x n matrices. The sum of the matrices A and B is
the m x n matrix C' = (c¢45), where

Cij = aij + bij
for all 4, j. We write C = A+ B.

@ Let A = (ai;) be an m x n matrix, t € R. The product of the number ¢ and the
matrix A is the m x n matrix D = (d;;), where

dij =t-aij

for all 4, 5. We write D = tA.

As with vectors, we define —A to mean (—1)A, and we write A — B instead of
A+ (-1)B.
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Example

Let
a=(109) m=(3 4 0) e=(3 )
Then
wn = (315),
- (87)
am2m = (35 3) (6 )
2

The sum A + C is not defined since A and C have different sizes.
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Definition (Matrix multiplication)

Let A = (a;;) be an m x n matrix, B = (b;;) be an n x p matrix. The product of
the matrices A and B (in this order) is the m x p matrix C' = (c¢;;), where

Cij = anbij + aizbaj + - + Ainbn;

fori=1,...,m, j=1,...,p. We write C' = AB.

V.

Remark (Explanation of the previous definition)

@ The number of the columns of A must be equal to the number of the rows of
B. Otherwise, AB is not defined. AB has the same number of rows as A and
the same number of columns as B.

@ The entry ¢;; in C' is the scalar product of the i-th row of A and the j-th
column of B.

@ As we will see from examples, matrix multiplication is not a commutative
operation, i.e., in general, AB # BA. The position of the factors in the
product AB is emphasized by saying that A is right-multiplied by B or that
B is left-multiplied by A.
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Example

Let
A:

Then
3 2
AB = 0 1
-2 0

3 2 -1 2

o1 2|, B=|[3
-2 0 1 1
-1 2 1

2 30

1 1 3

w o =
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Example

Let
3 2 -1 2 1
A= 0 1 2 , B= 3 0
-2 0 1 1 3
Then
3 2 -1 2 1
AB = 0 1 2 3 0
-2 0 1 1 3

3-24+2-3-1-1
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Example

Let
3 2 -1 2 1
A= 0 1 2 , B= 3 0
-2 0 1 1 3
Then
3 2 -1 2 1
AB = 0 1 2 3 0
-2 0 1 1 3

3-242-3-1-1 3:-1+2-0-1-3
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Example

Let
3 2 -1 2 1
A= 0 1 2 , B= 3 0
-2 0 1 1 3
Then
3 2 -1 2 1
AB = 0 1 2 3 0
-2 0 1 1 3

3-242-3-1-1 3:-1+2-0—-1-3
0-2+1-34+2-1

Simona Fisnarova (MENDELU) Linear algebra — vectors, matrices, determinants 2014 17 / 44



Example

Let
3 2 -1 2 1
A= 0 1 2 , B= 3 0
-2 0 1 1 3
Then
3 2 -1 2 1
AB = 0 1 2 3 0
-2 0 1 1 3

3-242-3-1-1 3:-1+2-0—-1-3
0-2+1-342-1 0-1+1-0+4+2-3
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Example

Let
A:

Then
3 2
AB = 0 1
-2 0

3 2 -1 2 1

o1 2|, B=|[3
-2 0 1 1 3
-1 2 1

2 30

1 1 3

3-242-3-1-1 3:-1+2-0—-1-3

0-2+1-342-1 0-1+1-0+4+2-3

—2-240-3+1-1

2014

17 / 44
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Example

Let
3 2 -1 2 1
A= 0 1 2 , B= 3
-2 0 1 1 3
Then
3 2 -1 2 1
AB = 0 1 2 3 0
-2 0 1 1 3

3-242-3-1-1 3:-1+2-0—-1-3
0-2+1-342-1 0-1+1-0+4+2-3
—-2-240-34+1-1 —-2-14+0-0+41-3

17 / 44
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Example

Let
3 2 -1 2 1
A= 0 1 2 , B= 3 0
-2 0 1 1 3
Then
3 2 -1 2 1
AB = 0 1 2 3 0
-2 0 1 1 3
3-242-3-1-1 3-14+42-0—-1-3 11 0
= 0-241-34+2-1 0-14+1-0+2-3 = 5 6
-2-2+0-3+1-1 —-2-1+0-0+1-3 3 1
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Example

Let
3 2 -1 2 1
A= o1 21|, B=[3 0
-2 0 1 1 3
Then
3 2 -1 2 1
AB = 0 1 2 3 0
-2 0 1 1 3
3:242-3—-1-1 3:-14+42-0—-1-3 11 0
= 0-2+1-3+2-1 0-1+1-0+2-3 = 5
-2-24+0-3+1-1 —-2-14+0-0+1-3 -3 1
2 1 3 2 -1
BA = 30 0 1 2 is not defined.
1 3 -2 0 1
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Example

Let
3 2 -1 2 1
A= o1 21|, B=[3 0
-2 0 1 1 3
Then
3 2 -1 2 1
AB = 0 1 2 3 0
-2 0 1 1 3
3:24+2-3-1-1 3:1+2-0—-1-3 11 0
= 0-2+1-3+2-1 0-1+1-0+2-3 = 5
—-2.24+40-34+1-1 —-2-14+0-04+1-3 -3 1
2 1
30 O 1 is not defined.
1 3 -2 0
3 2 — 11 8 0
A2 = 0 1 0 1 = -4 1 4
-2 0 -2 0 1 -8 —4 3
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Theorem (Properties of matrix multiplication)

Let A, B,C, I have sizes for which the indicated sums and products are defined,
reR.

Q A(BC)=(AB)C (associative law)

Q AB+C)=AB+ AC (left distributive law)

Q@ (B+(C)A=BA+CA (right distributive law)

Q r(AB) = (rA)B = A(rB)

QIA=AI=A (identity for matrix multiplication)

Warnings
@ In general, AB # BA.

© The cancellation laws do not hold for matrix multiplication, i.e.,
AB = AC # B = C in general.

© In general, AB=0# A=0o0r B=0.

| \
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Row echelon form

Definition (Row echelon matrix)

We say that a matrix is in row echelon form if it has the following properties:
o All zero rows (if exist any) are at the bottom of the matrix.

@ If two successive rows are nonzero, then the second row starts with more
zeros than the first one.

Example

The following matrices are in row echelon form:

10 7 3 05 7312 31
0 2 5 2 000 45 3 0 2
0 00 0" 0000201 2
0 0 0O 0000 O0O0TO0G6

The leading (leftmost nonzero) entries form an echelon pattern that moves down
and to the right through the matrix.
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Definition (Rank of a matrix)

Let A be a matrix. The rank of the matrix A, denoted by rankA, is the maximal
number of linearly independent rows of A.
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The rank of a matrix in row echelon form equals to the number of the nonzero
rows of this matrix.
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Theorem

The rank of a matrix in row echelon form equals to the number of the nonzero
rows of this matrix.

Example
Let
0 57312 31 10 7 3
0 00 45 3 0 2 01 5 2
A= 0 0 0 0 2 01 2], B=]0 31 8
0 000 0 O0 06 7 5 01
0 0O00OO0OO0OTO 0O 0 0 0 O

A is in row echelon form and rankA = 4.
B is not in row echelon form, and hence we are not able to find rankB at first
sight.
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Definition (Equivalent row operations)

The following operations
@ multiplying a row by a nonzero constant,
@ interchanging rows in arbitrary order,
© adding a multiple of one row to a nonzero multiple of another row,
© omitting a zero row or a row which is a constant multiple of another row,

are called equivalent row operations. The fact that a matrix A is transformed into
a matrix B applying a sequence of these operations is denoted by A ~ B and
these matrices are said to be equivalent.
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Definition (Equivalent row operations)

The following operations
@ multiplying a row by a nonzero constant,
@ interchanging rows in arbitrary order,
© adding a multiple of one row to a nonzero multiple of another row,
© omitting a zero row or a row which is a constant multiple of another row,

are called equivalent row operations. The fact that a matrix A is transformed into
a matrix B applying a sequence of these operations is denoted by A ~ B and
these matrices are said to be equivalent.

(i) Any nonzero matrix can be transformed by equivalent row operations into its
row echelon form.

(ii) The equivalent row operations preserve the rank of matrices, i.e., equivalent
matrices have the same rank.
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@ To find the rank of a matrix A, we apply equivalent row operations onto A in
order to convert A into its row echelon form. The rank of A is then equal to
the number of the nonzero rows of this echelon form.

@ Any nonzero matrix may be transformed by elementary row operations into
more than one matrix in row echelon form, using different sequences of row
operations.

@ In the following, by the pivot we mean a nonzero number that is used to
create zeros via row operations. The row and the column containing the pivot
are called pivot row and pivot column, respectively.
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Example

Find the rank of the matrix
3 6 -1 —2 4

1 3 2 -1 2
A= 0 2 1 0 -1
-1 1 0 1 —4

2014

24 / 44
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Example
Find the rank of the matrix

36 —1 —2 4 .
1 3 9 ~1 9 @ We start with the leftmost

A= 0o 2 1 0 -1 nonzero column. This is a pivot
11 0 1 —4 column.

@ We select a nonzero entry in
this column as a pivot.
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Example
Find the rank of the matrix

506 -1 =24 We start with the leftmost
o We start wi e leftmos
A= g ? _01 _21 nonzero column. This is a pivot
] 0 1 _1 column.

@ We select a nonzero entry in
this column as a pivot.
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Example
Find the rank of the matrix

3.6 —1 -2
A8 2 -
02 1 0
11 0 1
1] 3 2 -1
|3 6 -1 2

2
-1
—4

top of the matrix.

2
4

4
:| @ We move the pivot row to the
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Example
Find the rank of the matrix

3.6 —1 -2

Ao 3 2 -1
02 1 0
11 0 1
3 2 -1

13 6 -1 2
0 2 1 0

2
-1
—4

top of the matrix.

2
4
-1

4
:| @ We move the pivot row to the

Simona Fignarova (MENDELU)

Linear algebra — vectors, matrices, determinants

2014

24 / 44



Example
Find the rank of the matrix

3.6 —1 -2
A8 2 -
02 1 0
11 0 1
1] 3 2 -1
13 6 -1 2
0 2 1 0
11 0 1

4
9 :| @ We move the pivot row to the
1 top of the matrix.
—4
2
4
-1
—4
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Example

Find the rank of the matrix

3 6 -1 -2 4 :l W . o
@ We create zeros below the

A= g ? _01 _21 pivot, i.e., we add a multiple of
11 0 1 —4 the pivot row to the rows below.
3.2 -1 2

|3 6 -1 -2 4

0 2 1 0 -1
-11 0 1 -4
13 2 -1 2
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Example
Find the rank of the matrix
3 6 -1 -2 4 :| W . o
@ We create zeros below the
A= g ? _01 _21 pivot, i.e., we add a multiple of
11 0 1 —4 the pivot row to the rows below.
3.2 -1 2
|3 6 -1 -2 4
0 2 1 0 -1
-11 0 1 -4
13 2 -1 2
10
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Example
Find the rank of the matrix

3 6 -1 -2 4 S W . o
@ We create zeros below the
A= g ? _01 _21 pivot, i.e., we add a multiple of
11 0 1 —4 the pivot row to the rows below.
3 2 -1 2
3 6 -1 2 4
0o 2 1 0 -1
-1 1 0 1 —4
1 3 2 -1 2
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Example

Find the rank of the matrix

S S 1, S W t below th
@ We create zeros below the

A= g ? _01 _21 pivot, i.e., we add a multiple of
11 0 1 —4 the pivot row to the rows below.
3.2 -1 2

|3 6 -1 -2 4

0o 2 1 0 -1
-11 0 1 -4
13 2 -1 2
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Example

Find the rank of the matrix
S S 1, S W t below th
@ We create zeros below the
A= g ? _01 _21 pivot, i.e., we add a multiple of
11 0 1 —4 the pivot row to the rows below.
3.2 -1 2
|3 6 -1 -2 4
0o 2 1 0 -1
-11 0 1 -4
13 2 -1 2
10 =3 -7 1
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Example
Find the rank of the matrix

3.6 —1 -2
A8 2 -
02 1 0
11 0 1
1] 3 2 -1
13 6 -1 2
0 2 1 0
-1 1 0 1
1 3 2 -1
I L R A

4 :| @ We create zeros below the
2 . . .
1 pivot, i.e., we add a multiple of
4 the pivot row to the rows below.
2
4
-1
—4
2
—2
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Example
Find the rank of the matrix

3 6 —1 —2
A 3 2 -1
0 2 1 0
11 0 1
3 2 -1
13 6 -1 -2
0 2 1 0
11 0 1
1 3 2 -1
0 -3 -7 1
“lo 2 1 o0

4 :| @ We create zeros below the
2 . . .
1 pivot, i.e., we add a multiple of
4 the pivot row to the rows below.
2
4
-1
—4
2
-2
-1
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Example
Find the rank of the matrix
306 -1 =24 D W. t below th
@ We create zeros below the
A= g ? _01 _21 pivot, i.e., we add a multiple of
11 o0 1 4 the pivot row to the rows below.
3 2 -1 2
3 6 -1 —2 14
0 2 1 0 -1
-1 1 0 1 -4
1 3 2 -1 2
N 0o -3 -7 1 =2
0 2 1 0 -1
0
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Example
Find the rank of the matrix
306 -1 =24 D W. t below th
@ We create zeros below the
A= g ? _01 _21 pivot, i.e., we add a multiple of
11 o0 1 4 the pivot row to the rows below.
3 2 -1 2
3 6 -1 —2 14
0 2 1 0 -1
-1 1 0 1 -4
1 3 2 -1 2
N 0o -3 -7 1 =2
0 2 1 0 -1
0 4
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Example
Find the rank of the matrix
306 -1 =24 D W. t below th
@ We create zeros below the
A= g ? _01 _21 pivot, i.e., we add a multiple of
11 o0 1 4 the pivot row to the rows below.
3 2 -1 2
3 6 -1 —2 14
0 2 1 0 -1
-1 1 0 1 -4
1 3 2 -1 2
N 0o -3 -7 1 =2
0 2 1 0 -1
0 4 2
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Example
Find the rank of the matrix
306 -1 =24 D W. t below th
@ We create zeros below the
A= g ? _01 _21 pivot, i.e., we add a multiple of
11 o0 1 4 the pivot row to the rows below.
3 2 -1 2
3 6 -1 —2 14
0 2 1 0 -1
-1 1 0 1 -4
1 3 2 -1 2
N 0o -3 -7 1 =2
0 2 1 0 -1
0 4 2 0
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Example
Find the rank of the matrix

3.6 -1 —2
A 3 2 -1
02 1 0
-11 0 1
3 2 -1
13 6 -1 2
0 2 1 0
11 0 1
13 2 -1
0 -3 -7 1
“lo 2 1 o0
0 4 2 0

4 D @ We create zeros below the
2 . . .
1 pivot, i.e., we add a multiple of
4 the pivot row to the rows below.
2
4
-1
—4
2
-2
-1
-2
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Example

Find the rank of the matrix
306 —1 =2 D W. it the fourth
@ We can omit the fourth row,
A= g ? _01 _21 since this row is a multiple of
11 0 1 4 the second row.
3 2 -1 2
|3 6 -1 -2 4
0o 2 1 0 -1
1 1 0 1 —4
1 3 2 -1 2
N 0o -3 -7 1 =2
0 2 1 0o -1
v 4 2 0 f2
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Example
Find the rank of the matrix

3 6 -1 =24 S Next d with th
_ o ext we proceed wi e
A= g ? 01 _21 submatrix below the first row.
-1 1 0 1 —4
3 2 -1 2
3 6 -1 —2 14
0o 2 1 0 -1
-1 1 0 1 —4
1 3 2 -1 2
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0o 2 1 0 -1
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Example
Find the rank of the matrix
306 -1 =24 D Next d with th
_ @ Next we proceed wi e
A= g ? 01 _21 submatrix below the first row.
11 0 1 4 @ We choose a pivot in the
leftmost nonzero column of this
3 2 -1 2 -3 submatrix.
|3 6 -1 -2 4 +
0o 2 1 0 -1
-1 1 0 1 —4
1 3 2 -1 2
o -7 1 =2
0 2 1 0o -1
v o4 2 0 f2
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Example
Find the rank of the matrix

500 ~1 -2 D Next d with th
B @ Next we proceed wi e
A= g ? 01 _21 submatrix below the first row.
11 0 1 _4 @ We choose a pivot in the

leftmost nonzero column of this
3 2 -1 2 -3 submatrix.

~|3 6 -1 =2 4 + @ We do not need to move the
0 2 1 0 -1 pivot row.
-1 1 0 1 -4
1 3 2 -1 2
o -7 1 -2
0 2 1 0 -1
v 4 2 0 £2
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Example
Find the rank of the matrix
306 -1 =24 2 We creat below th
@ We create zeros below the
A= g ? _01 _21 pivot, i.e., we add a multiple of
the pivot row to a multiple of
-1 1 0 1 —4
the row below.
3 2 -1 2 -3
13 6 -1 2 4 .
0 2 1 0 -1
-1 1 0 1 —4
1 3 2 -1 2
0 -7 1 -2 2
0 2 1 0o -1 |3 :+
v 4 2 0 £2
1 3 2 -1 2
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Example
Find the rank of the matrix

36 -1 -2 4 D
Ao 3 2 -1 2

02 1 0 -1

11 0 1 -4

3 2 -1 2 -3
13 6 -1 2 4 "

02 1 0 -1

11 0 1 -4

1 3 2 -1 2

0 -7 1 =2 2

02 1 0 1| (3

v 4 o ~2

1 3 2 -1 2
~(0 3 -7 1 -2

@ We create zeros below the
pivot, i.e., we add a multiple of
the pivot row to a multiple of
the row below.
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Example
Find the rank of the matrix
306 -1 =24 2 We creat below th
@ We create zeros below the
A= g ? _01 _21 pivot, i.e., we add a multiple of
the pivot row to a multiple of
-1 1 0 1 —4
the row below.
3 2 -1 2 -3
13 6 -1 2 4 .
0 2 1 0 -1
-1 1 0 1 —4
1 3 2 -1 2
0 -7 1 -2 2
0 2 1 0o -1 |3 :+
v 4 2 0 £2
1 3 2 -1 2
~|l0 -3 -7 1 =2
0
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Example
Find the rank of the matrix

3 6 —1 -2
A8 2 -
0 2 1 0
-1 1 0 1

4
9 D @ We create zeros below the

-1

—4 the row below.

pivot, i.e., we add a multiple of
the pivot row to a multiple of
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Example
Find the rank of the matrix

3 6 —-1 =2 4 D W . elon €
@ We create zeros below the
A= g ? _01 _21 pivot, i.e., we add a multiple of
11 0 1 4 the pivot row to a multiple of
the row below.
3.2 -1 2 -3
3 6 -1 -2 4 +

0o 2 1 0 -1
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Example
Find the rank of the matrix

3 6 —-1 =2 4 D W . elon €
@ We create zeros below the
A= g ? _01 _21 pivot, i.e., we add a multiple of
11 0 1 4 the pivot row to a multiple of
the row below.
3.2 -1 2 -3
3 6 -1 -2 4 +

0o 2 1 0 -1
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Example
Find the rank of the matrix
306 -1 =24 2 We creat below th
@ We create zeros below the
A= g ? _01 _21 pivot, i.e., we add a multiple of
the pivot row to a multiple of
-1 1 0 1 —4
the row below.
3 2 -1 2 -3
13 6 -1 2 4 .
0 2 1 0 -1
-1 1 0 1 —4
1 3 2 -1 2
0 -7 1 -2 2
0 2 1 0o -1 |3 :+
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1 3 2 -1 2
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Example
Find the rank of the matrix
306 -1 =24 2 We creat below th
@ We create zeros below the
A= g ? _01 _21 pivot, i.e., we add a multiple of
the pivot row to a multiple of
-1 1 0 1 —4
the row below.
3 2 -1 2 -3
13 6 -1 2 4 .
0 2 1 0 -1
-1 1 0 1 —4
1 3 2 -1 2
0 -7 1 -2 2
0 2 1 0o -1 |3 :+
v 4 2 0 £2
1 3 2 -1 2
~|l0 -3 -7 1 =2
0o o0 -1 2 -7

Simona Fisnarova (MENDELU) Linear algebra — vectors, matrices, determinants 2014 24 / 44



Example
Find the rank of the matrix
3 6 -1 —2 4 jj
Ao 3.2 -1 2
0 2 1 0 -1
-1 1 0 1 —4
3 2 -1 2 -3
L3 6 -1 -2 4 +
0 2 1 0 -1 @ The matrix in row echelon form
-1 1 0 1 -4 has three nonzero rows, hence
1 2 -1 2 rank(A) = 3.
0 |-3] -7 1 -2 2
0 2 1 0o -1 |3 J+
v o4 2 0 f2
1 3 2 -1 2
~(0 -3 -7 1 -2
o o0 -1 2 -7
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The process of conversion of a matrix into its row echelon form described in the
previous example can be summarized as follows:

Conversion a matrix into its row echelon form

@ Begin with the leftmost nonzero column — the so-called pivot column. Select
a nonzero entry in the pivot column as a pivot (the best choice: 1 or —1).

© Move the pivot row to the top.

@ Use row operations to create zeros in all positions below the pivot (i.e., add
an appropriate constant multiple of the pivot row to an appropriate constant
multiple of each row below). Optionally, use additional row operations that
may simplify the matrix.

@ Cover (or ignore) the pivot row and all rows, if any, above it. Apply steps 1-3
to the submatrix that remains. Repeat the process until the matrix is in a row
echelon form.

4
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Theorem

The rank of a matrix and the rank of its transpose are the same, i.e.,
rankA = rankA7T.

I A

It follows from the last theorem that all facts concerning the rank of a matrix
which are valid for rows can be reformulated for columns. Hence the rank of a
matrix can be also regarded as the maximal number of linearly independent
columns of the matrix.

v

Remark (Linear (in)dependence of vectors)

We can conclude from the definition of the rank of a matrix (and from the last
theorem) that m given vectors are

@ linearly dependent whenever rankA < m,
@ linearly independent whenever rankA = m,
where A is a matrix whose rows (or columns) are formed from the given vectors.

W
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Example

The vectors
(3,6,-1,-2,4), (1,3,2,-1,2), (0,2,1,0,-1), (-1,1,0,1, —4)

are linearly dependent since the rank of the matrix

3ol 1 3 2 -1 2
13 2 -1 2

~(0 -3 -7 1 -2
R 0o 0 -1 2 -7
-1 1 0 1 —4

equals 3, see the example above.
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Example

The vectors

(0,2,0,3,0), (1,0,0,0,0), (0,0,0,5,—1), (0,0,1,0,—4)

are linearly independent since the rank of the matrix

0203 0 100
1000 0 0 2 0
00035 -1 |7[oo1
0010 —4 0 0 0

equals 4.

T O W o
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Inverse matrix

Definition (Inverse matrix)

Let A be an n x n square matrix. We say that A is invertible if there exists an
n x n matrix A~! such that

AAT ' =T=A71A

The matrix A~ is called the inverse of A.

If A is invertible, than the inverse A~! is determined uniquely by A. But not every
matrix is invertible.

o A matrix A is invertible if and only if A can be transformed into I by
equivalent row operations.

@ Any sequence of equivalent row operations that transforms A into I also
transforms I into A=1.
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The last theorem leads to a method for finding the inverse of a matrix.

An algorithm for finding A~1

Let A be a square matrix.
Q@ We form the “partitioned” matrix (A|I).

@ We apply to (A|I) the equivalent row operations that converts A into I. (We
create zeros in all positions below and above the pivots.)

Q If A is converted into I (the left-hand side of the resulting matrix is I), then
A~ appears on the right-hand side of the resulting matrix, i.e.,

() ~ -~ (T]A7Y),

@ If A cannot be converted to I (if there appears a zero row on the left-hand
side), then A does not have an inverse.

I We cannot use any column operations.
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1 -1 1
A=|2 0 -1| A'=
0 2 -2
1] =1 1 |t 0 0\—-2
0 —10 1 0]
2 -210 0 1
0 0
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1 -1 1
A=12 0 -1 AL =7
0o 2 =2
-1 1 1 00 —2
2 0 110 1 0 <:|+
0 2 —~210 0 1
1 -1 1 1 0 0
~l0 2 -3|-2 1 0
0 2 =210 0 1
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1 -1 1
A=12 0 -1 AL =7
0o 2 =2
-1 1 1 00 —2
0 —~110 1 0O <:|+
2 —~210 0 1
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1 -1 1
A=12 0 -1 AL =7
0o 2 =2
-1 1 1 00 —2
0 —~110 1 0O <:|+
2 —~210 0 1

Linear algebra — vectors, matrices, determinants
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Example
1 -1 1
A=1[2 0 -1 Al =27
0o 2 =2
-1 111 00 -2
2 0 —110 1 0 <:|+
0 2 —210 0 1
1 -1 1|1 0 0\| 2j+
~ |0 —3]-2 1 0 -1
(0 2 20 0 1)— 1
2 0 =110 1 0
~[0 2 -3(-2 1 0
0 0 1 2 -1 1

2014 31/ 44
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Example

1 -1 1
A=1[2 0o -1| A'=

0 2 -2

1] -1 1|1 00 -2
’o_lo1og+

0 2 —20 0 1

I =1 1|1 0 0\] -2+
~0—3—21oj 1
(02—2001<4+
20 -1jo 1 o0 +
N02—3_210<:|+
00 [t]|2 -1 1)—s

2014 31/ 44
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Example

1 -1 1
A=|2 0o —1| A1=

0 2 -2

_11100 -2

2 0_10103+

0 2 —210 0 1

I =1 1 ]1 0 0\]-2+++
~0_3—210—<—[—1
(02—2001<4+

20 1|0 1 0 + 2 0 02 0 1
N02—3_210j+ ~l0 2 o4 -2 3
00 [t]|2 -1 1)—s 00 112 -1 1
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Example

1 -1 1
A=[2 0 -1 A'=?

0 2 -2

1] -1 1 1 0 0\—-2

2 0 _10103+

0 2 -21]0 01

1—11100|23+
~lo [2] —-3]-2 1 0 -1
(02—2001<4+

2. 0 1[0 1 0 + 2 0 02 0 1\]:2
N02—3_210j+ ~(0o 2 0f4 —2 3| :2
00 [t]|2 -1 1)—s 00 1]2 -1 1
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0 -1]o0 1 0 2 0 02 0 1\]:2
~[0 2 3|2 1 0] ~10 2 0of4 —2 3]|:2
o [1]]2 -1 1)s 00 1]2 -1 1
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1 -1 1
A=|[2 0o -1| A=

0 2 -2

_1 1 /100 -2

2 0 _10103+

0 2 —-210 0 1

1—11100|-2j+
~lo [2] —-3]-2 1 0 -1
02—2001<4+

2 0 -1lo 1 0 + 2.0 02 0 1\]:2
N02—3_210j+ ~[0o 2 o4 —2 3]|]:2
00 [t]|2 -1 1)—s 00 12 —1 1
10010%
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Example

0 1 0
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0 1|0 1 o0 + 2 0 012 0 1\]:2
~ 2—3_210j+ ~[0o 2 o4 —2 3]|]:2
o [1]]2 -1 1)s 00 112 -1 1

100 |1 0o 1 2 0 1
~10 10 2—1§ :A-l_g(z; -2
001 |2 -1 1 4 -2 2
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Example
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Example
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Tl
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w

1 2

1 3 B~ =?
37

211 0 O -2
310 1 0 :|+
710 0 1

Simona Fignarova (MENDELU)

Linear algebra — vectors, matrices, determinants

2014

32/ 44



Example

™
|
)

—_

Tl
=

w

1 2

1 3 B~ =%

3 7

211 0 O -2 1—4
310 1 0 :|+

710 0 1 +

11 2j1 0 O
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Example

™
|
)

—_

Tl
=

w

1 2

1 3 B~ =%

3 7

211 0 O -2 1—4
310 1 0 :|+

710 0 1 +

~

1
0
0

1
-1
-1

211 00
-1|1-2 1 0
—-1]-4 0 1
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Example

11 2
B=12 1 3 Bl =?
4 3 7

—
w

& 0[]
[
[N

1 00 -2 -4 1 1 211 00
01 0 :+ ~10 -1 -1{-2 1 O
0 0 1 + 0 -1 -1|-4 0 1

It follows from the last matrix that B~! does not exist.

w
N
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Determinants

Determinant of a matrix

Let A = (a;;) be an n x n matrix. The determinant of A is a real number det A
(also denoted by |A4]), i.e.,

aix  aiz - A1n

a1 Q22 - a2n
det A = |A] = ,

Gp1  Qp2 - Ann

which is assigned to A "in a certain way".
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Determinants of small matrices

o lfn=1,ie, A=ai, then det A = ay;.
o lfn=2:

a11 a2

= a11G22 — 021012,
a1 a22
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Determinants of small matrices

o lfn=1,ie, A=ai, then det A = ay;.
o lfn=2:

a11 a2

= a11G22 — 021012,
a1 a22

o lfn=3:

a11 aiz2 ais
G21 A2z a23 | =
asz; agz as3

(11022033 + Q21032013 + A12G23031
—a31G22013 — 432023011 — G21012033.
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Sarus’ rule for determinant of 3 x 3 matrix

The formula for calculation determinants of 3 x 3 matrices can be remembered as
follows:

a11 a2 ais
G21 Q22 a23 | =
asz1 asz a33

11022033+021032013+031012023
—031022013— 011032023 — 021012033
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Sarus’ rule for determinant of 3 x 3 matrix

The formula for calculation determinants of 3 x 3 matrices can be remembered as
follows:
@ We write once more the first and the second row below the determinant.

a11 a2 ais
G21 Q22 QG23 | =
asz1 asz as3

11022033+021032013+031012023
—031022013— 011032023 — 021012033

a1l aiz2 G13
21 Q22 a23

2014 35/ 44
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Sarus’ rule for determinant of 3 x 3 matrix

The formula for calculation determinants of 3 x 3 matrices can be remembered as
follows:
@ We write once more the first and the second row below the determinant.

@ Then we multiply each three elements in the main diagonal and below (these
products are with the sign +).

a11 a2 ais
G21 Q22 QG23 | =
asz1 asz as3

11022033+021032013+031012023
—031022013— 011032023 — 021012033

a1l aiz2 G13
21 Q22 a23

2014 35/ 44
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Sarus’ rule for determinant of 3 x 3 matrix

The formula for calculation determinants of 3 x 3 matrices can be remembered as
follows:
@ We write once more the first and the second row below the determinant.

@ Then we multiply each three elements in the main diagonal and below (these
products are with the sign +).

a11 a2 ais
G21 22 Q23 | =
asz1 asz 33

11022033+021032013+031012023
—031022013— 011032023 — 021012033

a1l aiz2 G13
21 Q22 a23

2014 35/ 44
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Sarus’ rule for determinant of 3 x 3 matrix

The formula for calculation determinants of 3 x 3 matrices can be remembered as
follows:
@ We write once more the first and the second row below the determinant.

@ Then we multiply each three elements in the main diagonal and below (these
products are with the sign +).

a11 a2 ais
Ga21 Q22 aG23 | =
a3y azz a33

11022033+021032013+031012023
—031022013— 011032023 — 021012033

ai1 aiz2 a13
21 Q22 a23

2014 35/ 44
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Sarus’ rule for determinant of 3 x 3 matrix

The formula for calculation determinants of 3 x 3 matrices can be remembered as
follows:
@ We write once more the first and the second row below the determinant.

@ Then we multiply each three elements in the main diagonal and below (these
products are with the sign +).

a11 a2 ais
G21 Q22 QG23 | =
a3y asz a33

11022033+021032013 1031012023
—031022013— 011032023 — 021012033

@11 Gai2 a3
G21 Q22 423
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Sarus’ rule for determinant of 3 x 3 matrix

The formula for calculation determinants of 3 x 3 matrices can be remembered as
follows:
@ We write once more the first and the second row below the determinant.
@ Then we multiply each three elements in the main diagonal and below (these
products are with the sign +).

@ Next we multiply the elements in the diagonal as; — ass — a13 and below
(these products are with the sign —),

a11 a2 ais
G21 22 Q23 | =
a3y asz a33

11022033+021032013+031012023
—(31022013— 011032023 — 021012033

a1l aiz2 G13
21 Q22 a23
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Sarus’ rule for determinant of 3 x 3 matrix

The formula for calculation determinants of 3 x 3 matrices can be remembered as
follows:
@ We write once more the first and the second row below the determinant.
@ Then we multiply each three elements in the main diagonal and below (these
products are with the sign +).

@ Next we multiply the elements in the diagonal as; — ass — a13 and below
(these products are with the sign —),

a11 a2 ais
a21 Q22 (23 | =
a3y azz a33

11022033+021032013+031012023
—031022013— 011032023 —021 012033

@11 Gl ais3
21 Q22 a23
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Sarus’ rule for determinant of 3 x 3 matrix

The formula for calculation determinants of 3 x 3 matrices can be remembered as
follows:
@ We write once more the first and the second row below the determinant.
@ Then we multiply each three elements in the main diagonal and below (these
products are with the sign +).

@ Next we multiply the elements in the diagonal as; — ass — a13 and below
(these products are with the sign —),

a11 a2 ais
G21 Q22 QG23 | =
asz1 asz 33

11022033+021032013+031012023
—031022013— 011032023 — 021012033

@11 Gai2 a3
21 Q22 a23
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Sarus’ rule for determinant of 3 x 3 matrix

The formula for calculation determinants of 3 X 3 matrices can be remembered as
follows:
o We write once more the first and the second row below the determinant.
@ Then we multiply each three elements in the main diagonal and below (these
products are with the sign +).
@ Next we multiply the elements in the diagonal as; — ass — a13 and below
(these products are with the sign —),

@ and we sum up all these products.

a1l a2 ais
G21 Q22 a23 | =
asz1 asz 33

11022033+021032013+031012023
—031022013— 011032023 — 021012033

ai1 aiz2 Gi13
21 Q22 a23
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Sarus’ rule for determinant of 3 x 3 matrix

The formula for calculation determinants of 3 X 3 matrices can be remembered as
follows:
o We write once more the first and the second row below the determinant.
@ Then we multiply each three elements in the main diagonal and below (these
products are with the sign +).
@ Next we multiply the elements in the diagonal as; — ass — a13 and below
(these products are with the sign —),

@ and we sum up all these products.

a1l a2 ais
G21 Q22 a23 | =
asz1 asz 33

11022033+021032013+031012023
—031022013— 011032023 — 021012033

ai1 aiz2 Gi13
21 Q22 a23

@ This trick does not generalize in any way to 4 x 4 or larger matrices!
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When computing determinants of 4 x 4 or larger matrices we can use the
following Laplace expansion.

Theorem (The Laplace expansion)

Let n > 2 and assume that the determinant of (n — 1) x (n — 1) matrix has been
defined. Denote by M;; the determinant of the (n — 1) x (n — 1) matrix obtained
from A by deleting the i-th row and the j-the column. Then

det A = (—1)"ay My + (=1 2a; Mg + - - - + (= 1) "a;, My,
for i=1,...,n,

(the so-called Laplace expansion along the i-th row)
or in an alternative way:

det A =(— )1+]a1]M1 + (= 1)2+ja2jM2j S 000 qF (—1)n+jaannj
for j=1,...,n

(the so-called Laplace expansion along the j-th column)
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Example (Laplace expansion)

When using Laplace expansion for computing the determinant of a matrix, we
choose the row or column that contains many zeros.
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Example (Laplace expansion)

When using Laplace expansion for computing the determinant of a matrix, we
choose the row or column that contains many zeros.

@ The best choice in the following determinant is the third row.
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Example (Laplace expansion)

When using Laplace expansion for computing the determinant of a matrix, we
choose the row or column that contains many zeros.

@ The best choice in the following determinant is the third row.
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Example (Laplace expansion)

When using Laplace expansion for computing the determinant of a matrix, we
choose the row or column that contains many zeros.

@ The best choice in the following determinant is the third row.

-1 -2 -4 2
2 0 1 0
-3 3 -7 -1
2 5 -1
= (=132 -2 -4 2
3 -7 -1
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Example (Laplace expansion)

When using Laplace expansion for computing the determinant of a matrix, we
choose the row or column that contains many zeros.

@ The best choice in the following determinant is the third row.

-1 2 5 —1
-1 -2 —4 2

-3 3 -7 -1

2 5 -1 -1 2 -1
= (=132 =2 -4 2 | +(=1)*1| -1 -2 2
3 -7 -1 -3 3 -1

Simona Fisnarova (MENDELU) Linear algebra — vectors, matrices, determinants 2014

37/ 44



Example (Laplace expansion)

When using Laplace expansion for computing the determinant of a matrix, we
choose the row or column that contains many zeros.

@ The best choice in the following determinant is the third row.

@ The obtained two determinants of 3 x 3 matrices can be computed using the

Sarus rule.
-1 2 5 -1
-1 -2 —4 2
2 0 1 0
-3 3 -7 -1
2 5 —1 -1 2 -1
= (=132 =2 -4 2 | +(=1)*1| -1 -2 2
3 -7 -1 -3 3 -1
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Example (Laplace expansion)

When using Laplace expansion for computing the determinant of a matrix, we
choose the row or column that contains many zeros.

@ The best choice in the following determinant is the third row.

@ The obtained two determinants of 3 x 3 matrices can be computed using the

Sarus rule.
-1 2 5 -1
-1 -2 —4 2
2 0 1 0
-3 3 -7 -1
2 5 —1 -1 2 -1
= (=132 =2 -4 2 | +(=1)*1| -1 -2 2
3 -7 -1 -3 3 -1

=2[8 — 14+ 30 — (12 — 28 + 10)]
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Example (Laplace expansion)

When using Laplace expansion for computing the determinant of a matrix, we
choose the row or column that contains many zeros.

@ The best choice in the following determinant is the third row.

@ The obtained two determinants of 3 x 3 matrices can be computed using the

Sarus rule.
-1 2 5 -1
-1 -2 —4 2
2 0 1 0
-3 3 -7 -1
2 5 —1 -1 2 -1
= (=132 =2 -4 2 | +(=1)*1| -1 -2 2
3 -7 -1 -3 3 -1

=28 14430 — (12— 28+ 10)] + [-2+3 — 12 — (=6 — 6+ 2)] = 59
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Note that to calculate the determinant of n X n matrix we need to calculate n
determinants of (n — 1) x (n — 1) matrices. To calculate each of these n
determinants we need to calculate n — 1 determinants of (n —2) X (n — 2)
matrices, and so on.

This means that the Laplace expansion is not suitable for computing determinants
of large matrices with not many zeros.

The following statement says how to simplify computations by creating more zeros
in the matrix.
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Theorem (Properties of determinants)

Let A be an n X n square matrix.

© The determinant of a matrix and the determinant of its transpose are the
same, i.e., det A = det AT,

@ If a multiple of a row is added to another row, the value of the determinant is
unchanged.

@ If any two rows (columns) of A are interchanged, the determinant of the new
matrix equals — det A.

@ Ifa row (column) of A is multiplied by a number k, the determinant of the
new matrix is k det A.

@ Ifa row (column) of A is divided by a number k # 0, the determinant of the
new matrix is % det A.

o

The determinant of a matrix with zeros below the main diagonal is equal to
the product of the entries on the main diagonal, i.e., det A = aj1a22 - - - Gy .-

v
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The last theorem leads to other methods for computing the determinant of a
matrix using the row or column operations:

Method 1

We convert the matrix into the matrix which has zeros below the main diagonal.
Then we find the product of the entries of the main diagonal.

Method 2

We convert the matrix into the matrix which has at most one nonzero entry in
some row (or column). Then we use the Laplace expansion along this row (or
column).

| A

We have to be careful when using the row (or column) operations, since some of
these operations change the value of the determinant, namely:

@ changing rows (columns),
e multiplying (dividing) the non-pivot rows (columns).
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Theorem

Let A be an n x n square matrix. Then det A = 0 whenever at least one of the
following conditions is satisfied:

© A contains a zero row (or column).

@ Two rows (columns) of A are identical.

@ One row (column) is a constant multiple of another row (column).
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Regular and singular matrix

Let A be an n X n square matrix. Then the following statements are equivalent:
Q A is invertible, i.e., A~ exists.
Q det A #0.
© rankA =n.
@ The rows (columns) of A are linearly independent.

Definition (Regular and singular matrix)

| A

We say that a square matrix is regular (or non-singular), if it has the properties
stated in the last theorem. In the opposite case, the matrix is said to be singular.

4
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Using the computer algebra systems

Wolfram Alpha:

http://www.wolframalpha.com/

Example

Find the product of the matrices using the Wolfram Alpha:
1 2 2 L2
2 1 3 31
1 4

{{1,2,2},{2,1,3} }*{{1,2}.{3,1}.{1,4}}

Solution:
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http://www.wolframalpha.com/
http://www.wolframalpha.com/input/?i={{1,2,2},{2,1,3}}*{{1,2},{3,1},{1,4}}

Example

Using the Wolfram Alpha fing the rank, determinant and the inverse matrix of the
matrix

1 2 3
2 01
3 2 1

Solution:

Q rank:
rank{{1,2,3},{2,0,1},{3,2,1}}

@ determinant:

det{{1,2,3},{2,0,1},{3,2,1}}

@ inverse matrix:

inv{{1,2,3},{2,0,1},{3,2,1}}
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http://www.wolframalpha.com/input/?i=rank{{1,2,3},{2,0,1},{3,2,1}}
http://www.wolframalpha.com/input/?i=det{{1,2,3},{2,0,1},{3,2,1}}
http://www.wolframalpha.com/input/?i=inv{{1,2,3},{2,0,1},{3,2,1}}
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