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Motivation - area under a curve

Suppose, for simplicity, that y = f(x) is a nonnegative and continuous function
defined on [a, b].

What is the area of the region bounded by y = f(x), the x-axis and
the lines x = a and x = b?

The area can be approximated with the sum of rectangles:

We cut the interval [a, b] into subintervals. Each of these subintervals forms
the base of a rectangle, where the height of the rectangle is equal to the value
of the function f evaluated at an arbitrary point from the given subinterval.

The approximation improves as the rectangles become narrower and the
number of rectangles increases. We define the area of the region to be the
limit of the rectangle area sums as the rectangles become smaller and smaller
and the number of rectangles we use approaches infinity.

Such a limit can be defined even for more general functions and we call it definite
integral. The definite integrals can be defined in many different ways, we will
define the Riemann definite integral.

Construction of the Riemann integral
Let f be a function defined on an interval [a, b] and suppose that f is bounded
on this interval.

The sequence of points D = {x0, x1, x2, . . . , xn} such that

a = x0 < x1 < x2 < · · · < xn = b

is said to be a partition of the interval [a, b]. The intervals
[x0, x1], [x1, x2], . . . , [xn−1, xn] are called subintervals of the partition.

The number ν(D) = max{xi − xi−1, i = 1, 2, . . . , n} is called a norm of the
partition D, i.e., the norm of the partition is the length of the longest
subinterval of the partition.

We choose an arbitrary number from each of the subintervals
ξ1 ∈ [x0, x1], ξ2 ∈ [x1, x2], . . . , ξn ∈ [xn−1, xn] and we denote
Ξ = {ξ1, ξ2, . . . , ξn} the set of these numbers. Then the sum

σ(f,D,Ξ) =
n∑
i=1

f(ξi)(xi − xi−1)

is called the integral sum associated to the function f , the partition D and
the choice of the numbers ξi in Ξ.
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Integral sum:

a = x0 x1 x2 x3 x4 x5 x6 = b
ξ1 ξ2 ξ3 ξ4 ξ5 ξ6

σ(f,D,Ξ) = f(ξ1)(x1 − x0) + f(ξ2)(x2 − x1) + f(ξ3)(x3 − x2)

+f(ξ4)(x4 − x3) + f(ξ5)(x5 − x4) + f(ξ6)(x6 − x5)

=

6∑
i=1

f(ξi)(xi − xi−1)

Refinement of the partition:

a = x0 x1 x2 xn−1 xn = b· · ·
ξ1 ξ2 ξ3 ξn

σ(f,D,Ξ) = f(ξ1)(x1 − x0) + f(ξ2)(x2 − x1) + · · ·+ f(ξn)(xn − xn−1)

=

n∑
i=1

f(ξi)(xi − xi−1)
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Definition (Riemann integral)

Let f be a function defined and bounded on an interval [a, b]. Let

D1, D2, D3, . . . , Dn, . . . be a sequence of partitions of [a, b] which satisfies
lim
n→∞

ν(Dn) = 0 and

Ξ1,Ξ2,Ξ3, . . . ,Ξn, . . . be a sequence of the corresponding choices of
numbers ξi from subintervals of the partitions.

The function f is said to be integrable on [a, b] (in sense of Riemann) if there
exists a number I ∈ R with the property

lim
n→∞

σ(f,Dn,Ξn) = I

for every sequence of partitions (with the above given property) and for arbitrary
particular choice of the points ξi in Ξn. The number I is said to be a Riemann
integral of the function f on [a, b] and it is denoted

I =

∫ b

a

f(x) dx.

The number a is called a lower limit of the integral and the number b is called an
upper limit of the integral.

We have to distinguish the definite integrals from the indefinite integrals:

Indefinite integral is a set of functions.

Definite integral is a limit (number).

We will see, that there is a connection between the definite and indefinite
integrals, since definite integrals can be evaluated using indefinite integrals.
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Theorem (Sufficient conditions for integrability)

Let f be a function which satisfies at least one of the following conditions:

1 f is continuous on [a, b],

2 f is monotone on [a, b],

3 f is bounded on [a, b] and contains at most a finite number of discontinuities
on this interval.

Then the function f is integrable (in sense of Riemann) on [a, b], i.e.,
∫ b
a
f(x) dx

exists.

Properties of the Riemann integral

Theorem (Additivity and homogenity with respect to the integrand)

Let f and g be functions which are integrable on [a, b], c ∈ R. Then the functions
f + g and cf are also integrable on [a, b] and it holds:∫ b

a

[f(x) + g(x)] dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx

Theorem (Additivity with respect to the domain of integration)

Let f be a function defined of [a, b], and let c ∈ (a, b) be any number. Then the
function f is integrable on [a, b] if and only if it is integrable on both the intervals
[a, c] and [c, b] and it holds:∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx
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Theorem

Let f and g be functions integrable on [a, b] such that f(x) ≤ g(x) on this
interval. Then ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

It follows from the last theorem that

if g(x) ≥ 0, then

∫ b

a

g(x) dx ≥ 0,

i.e., integral of the nonnegative function is nonnegative.

Evaluation of the Riemann integral

Theorem (Newton - Leibniz formula)

Let f be a function integrable on [a, b] and let F be an antiderivative of f on
(a, b) which is continuous on [a, b]. Then∫ b

a

f(x) dx = [F (x)]
b
a = F (b)− F (a).

The previous theorem says that to calculate the Riemann integral of f over [a, b],
all we need to do is:

1 find an antiderivative F of f ,

2 calculate the number F (b)− F (a).
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Example

1

∫ 3

2

x2 dx =

[
x3

3

]3
2

=
33

3
− 23

3
=

19

3
.

2

∫ π
2

0

sinx dx =
[
− cosx

]π
2

0
= − cos

π

2
+ cos 0 = 1.

3 ∫ 1

−3
|x| dx =

∫ 0

−3
(−x) dx+

∫ 1

0

x dx =

[
−x

2

2

]0
−3

+

[
x2

2

]1
0

= 0 +
9

2
+

1

2
− 0 = 5.

Theorem (Integration by parts)

Let u, v be functions having continuous derivatives on [a, b]. Then∫ b

a

u(x)v′(x) dx = [u(x)v(x)]
b
a −

∫ b

a

u′(x)v(x) dx.

Example

∫ 2

1

x lnx dx =

∣∣∣∣ u = lnx v′ = x

u′ = 1
x v = x2

2

∣∣∣∣ =

[
x2

2
lnx

]2
1

−
∫ 2

1

1

x
· x

2

2
dx

=
4

2
ln 2− 1

2
ln 1− 1

2

∫ 2

1

x dx = 2 ln 2− 0− 1

2

[
x2

2

]2
1

= 2 ln 2− 1

2

[
4

2
− 1

2

]
= 2 ln 2− 3

4
.
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Theorem (Substitution method)

Let f be a function continuous on [a, b] and let ϕ be a function which has
continuous derivative ϕ′ on [α, β]. Further suppose that a ≤ ϕ(x) ≤ b for
x ∈ [α, β]. Then ∫ β

α

f [ϕ(x)]ϕ′(x) dx =

∫ ϕ(β)

ϕ(α)

f(t) dt.

The formula in the theorem can be used “from left to right” (the 1 st
substitution method) and “from right to left”(the 2 nd substitution method).

It may happen in some particular cases that the lower limit ≥ the upper limit
after the substitution. For this reason we introduce the following extension:

Extension

The symbol
b∫
a

f(x) dx can be extended for b ≤ a as follows:

∫ a

a

f(x) dx = 0,

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

We have two possibilities when evaluating the definite integral with using the
substitution method:

1 We use the previous theorem, i.e., we transform the limits of the integral and
then we use the Newton-Leibniz formula with the new limits. (We do not
substitute the original variable into the antiderivative obtained after the
integration.)

2 We do not use the previous theorem. We evaluate the indefinite integral (i.e.,
we substitute the original variable after integration) and then we apply the
Newton-Leibniz formula with the original limits.

7



Example

Evaluate

∫ π
2

0

sin2 x · cosx dx.

1 We transform the limits:

∫ π
2

0

sin2 x · cosx dx =

∣∣∣∣∣∣∣∣
t = sinx

dt = cosx dx
t1 = sin 0 = 0
t2 = sin π

2 = 1

∣∣∣∣∣∣∣∣ =

∫ 1

0

t2 dt =

[
t3

3

]1
0

=
1

3
.

2 We do not transform the limits:∫
sin2 x · cosx dx =

∣∣∣∣ t = sinx
dt = cosx dx

∣∣∣∣ =

∫
t2 dt =

t3

3
=

sin3 x

3
+ c.

Tedy ∫ π
2

0

sin2 x · cosx dx =

[
sin3 x

3

]π
2

0

=
sin3 π

2

3
− sin3 0

3
=

1

3
.

Applications of the Riemann integral in geometry

The area under a curve and between two curves

Let f be a nonnegative and continuous function
on [a, b].
The area S of the region in the plane bounded
by y = f(x), the x-axis and the lines x = a and
x = b is:

S =

∫ b

a

f(x) dx

Let f , g be continuous functions and suppose
f(x) ≥ g(x) for x ∈ [a, b].
The area S of the region in the plane bounded
by y = f(x), y = g(x) and the lines x = a and
x = b is:

S =

∫ b

a

[f(x)− g(x)] dx

(The signs of f and g are arbitrary.)
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Volume of the solid of revolution I

Let f be a nonnegative and continuous function on [a, b].
The volume V of the solid generated by revolving the region bounded by
y = f(x), the x-axis and the lines x = a and x = b about the x-axis is:

V = π

∫ b

a

f2(x) dx

Volume of the solid of revolution II

Let f , g be nonnegative continuous functions and suppose f(x) ≥ g(x) for
x ∈ [a, b].
The volume V of the solid generated by revolving the region bounded by
y = f(x), y = g(x) and the lines x = a and x = b about the x-axis is:

V = π

∫ b

a

[
f2(x)− g2(x)

]
dx
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Many other areas and volumes can be calculated using the above formulas since
we can cut the given region into several pieces which satisfy the above conditions.

S = S1 + S2 =

∫ c

a

[f(x)− h(x)] dx+

∫ b

c

[g(x)− h(x)] dx

Example (Volume of the cone)

Find the formula for a volume of a cone such that the radius of the base is r and
the altitude of the cone is v.

Solution:
If the following triangle revolves about the x-axis, we obtain the cone:

V = π

∫ v

0

( r
v
x
)2

dx =
πr2

v2

∫ v

0

x2 dx =
πr2

v2

[
x3

3

]v
0

=
πr2

v2
v3

3
=
πr2v

3
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Example (Volume of the ball)

Find the formula for the volume of a ball with the radius r.

Solution: The equation of a circle with radius r and the center at [0, 0] is
x2 + y2 = r2. The upper half-circle is the graph of the function y =

√
r2 − x2,

the lower half-circle is the graph of the function y = −
√
r2 − x2.

If the half-circle revolves about the x-axis, we obtain a ball. If a quarter of a circle
revolves about the x-axis, we obtain a half of the ball.

V = π

∫ r

−r
(r2 − x2) dx = 2π

∫ r

0

(r2 − x2) dx

= 2π

[
r2x− x3

3

]r
0

= 2π

(
r3 − r3

3

)
=

4πr3

3

Application of the definite integral in physics

Consider a region bounded by the graphs of
the functions y = f(x), y = g(x), and the
lines x = a, x = b, where g(x) ≤ f(x) on
〈a, b〉.

Suppose that the region has a constant density ρ. Then:

Mass of the region:

m = ρ

∫ b

a

[f(x)− g(x)] dx

Moments of force with respect to x-axis, y-axis:

Sx =
1

2
ρ

∫ b

a

[
f2(x)− g2(x)

]
dx, Sy = ρ

∫ b

a

x [f(x)− g(x)] dx

Center of mass:

T =

[
Sy

m
,
Sx

m

]
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Example (Center of mass)

Find the center of mass of the triangle given
by the vertices [0, 0], [3, 0], [3, 2]. Suppose that
the density ρ is constant.

Mass:

m = ρ

∫ 3

0

2

3
x dx = ρ

2

3

[
x2

2

]3
0

= ρ
2

3
· 9

2
= 3ρ

Moments of force:

Sx =
1

2
ρ

∫ 3

0

4

9
x2 dx =

2

9
ρ

[
x3

3

]3
0

=
2

9
ρ · 9 = 2ρ

Sy = ρ

∫ 3

0

x · 2

3
x dx =

2

3
ρ

∫ 3

0

x2 dx =
2

3
ρ

[
x3

3

]3
0

=
2

3
ρ · 9 = 6ρ

Center of mass:

T1 =
Sy
m

= 2, T2 =
Sx
m

=
2

3
=⇒ T =

[
2,

2

3

]

Approximation of definite integrals

Numerical methods for approximating the definite integral
b∫
a

f(x) dx are used in

the following cases:

The antiderivative of the function f has no elementary formula, hence the
Newton-Leibniz formula cannot be used ( sin x

x , sinx2, ex

x , e−x
2

, . . . ).

A formula for the function f is not known, we have only a set of measured
values.
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The trapezoidal rule

The trapezoidal rule for the evaluation a definite integral is based on
approximating the region between a curve and the x-axis with trapezoids.

a = x0 x1 x2 x3 x4 = b

Let f be a function bounded on [a, b]. To evaluate
b∫
a

f(x) dx :

We cut the interval [a, b] into n subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn],
(x0 = a, xn = b).

Suppose that the length of each subinterval is h = b−a
n .

Denote y0 = f(x0), y1 = f(x1), . . . , yn = f(xn).

We approximate the function f on [xi−1, xi], (i = 1, 2, . . . , n) with the linear
function passing through [xi−1, yi−1], [xi, yi]. This linear function is of the
form

y = yi−1 +
yi − yi−1

h
(x− xi−1) .

Hence ∫ xi

xi−1

f(x) dx ≈
∫ xi

xi−1

[
yi−1 +

yi − yi−1
h

(x− xi−1)

]
dx
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∫ xi

xi−1

f(x) dx ≈
∫ xi

xi−1

[
yi−1 +

yi − yi−1
h

(x− xi−1)

]
dx

=

[
yi−1x+

yi − yi−1
2h

(x− xi−1)2
]xi
xi−1

= yi−1h+
yi − yi−1

2h
h2

=
h

2
(yi−1 + yi),

which (in case when f is a positive function ) is the well-known formula for
evaluating an area of the trapezoid with corners
[xi−1, 0], [xi−1, yi−1], [xi, 0], [xi, yi]. Hence,∫ b

a

f(x) dx =

∫ x1

x0

f(x) dx+

∫ x2

x1

f(x) dx+ · · ·+
∫ xn

xn−1

f(x) dx

≈ h

2
(y0 + y1) +

h

2
(y1 + y2) + · · ·+ h

2
(yn−1 + yn)

=
h

2
(y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn).

The trapezoidal rule

Let f be a function bounded on [a, b], and let a = x0 < x1 < · · · < xn = b be a
partition of [a, b] such that the length of each subinterval of this partition is
h = b−a

n . Then∫ b

a

f(x) dx ≈ h

2
(y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn),

where y0 = f(x1), y2 = f(x2), . . . , yn = f(xn). (We suppose that f is defined at
the points x0, x1, . . . , xn.)

Some other rules for approximating the definite integrals can be used, e.g.,
the so-called Simpson’s rule is based on approximating curves with parabolas
instead of lines.
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Using the computer algebra systems

Wolfram Alpha:

http://www.wolframalpha.com/

Mathematical Assistant on Web (MAW):

wood.mendelu.cz/math/maw-html/index.php?lang=en&form=main

Example

Using the Wolfram Alpha find the integral∫ π

0

sinx dx.

Solution:

integrate sin x dx from x=0 to pi
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